
Surface Mesh Generation for Dirty Geometries

by Shrink Wrapping using Cartesian Grid Approach

Y. K. Lee1, Chin K. Lim2, Hamid Ghazialam3, Harsh Vardhan4 and Erling Eklund5

1 Fluent USA Inc., Evanston, IL 60201 ykl@fluent.com
2 Fluent USA Inc., Austin, TX 78746, ckl@fluent.com
3 Fluent USA Inc., Lebanon, NH 03766, hsg@fluent.com
4 Fluent India Pvt Ltd., Hinjewadi, Pune 411057, India, hxv@fluent.co.in
5 Fluent France S.A., 78180 Montigny le Bretonneux, France, erling@fluent.fr

Summary. A Cartesian shrink wrapping technique has been investigated in this study to
construct triangular surface meshes for three-dimensional dirty geometries. The geometries
dealt in this paper are defined by faceted representation with dirtiness such as non-
conforming edges, gaps and overlaps. The objective of the proposed technique is to deliver
a way constructing triangular surface meshes for upstream solutions in design processes
without extensive labors for healing dirtiness in complicated dirty geometries. A Cartesian
grid is overlaid onto the dirty geometries and its cells are adaptively refined until target
resolution is achieved while recording intersections with geometric facets in cells. An initial
watertight shell called the wrapper surface is constructed by selectively extracting the
boundary sides of intersected cells. The wrapper surface is improved by a subsequence of
operations such as projecting nodes onto geometry, adjusting nodes on the geometry and
editing local triangular faces to achieve better approximation. The meshes generated using
the presented technique may not be geometrically accurate but their quality is good enough
to quickly deliver upstream fluid analysis solutions with significantly reduced engineering
time for problems of extreme complexity such as the full underhood fluid/thermal analysis
for automobiles. Mesh generation experiments have been carried out for complicated ge-
ometries and results from some applications are presented in this paper.

1. Introduction

Automatic mesh generation has become an essential tool for the finite ele-
ment or finite volume analyses of practical engineering problems. The ge-
ometries of the problems are defined as CAD data and access to informa-
tion stored in CAD data can be provided either through geometric

394 Y.K. Lee et al.

modeling kernel or exporting the data in a format loadable into the target
system [BWS03]. The IGES and STEP are most commonly used protocols
for exchanging CAD data from one CAD system to the other system. Even
though the STEP normally delivers better translation results than IGES
does by providing information with representations and global tolerances,
immigration of CAD data from one system to the other often results in
dirty geometries containing gaps, holes, overlaps and non-conformal edges
which do not exist in the native data. The inconsistency of tolerant model-
ing methods in two systems is one of major reasons causing dirtiness in the
imported geometry. Another source of dirty geometries often ignored is the
urgent need of upstream solutions in practice. In such cases, engineers
have to carry out simulation even before all the parts in the model have not
been designed by leaving small voids or using similar parts in their legacy
library.

Imbedding the mesh generation system in CAD systems can be a way to
avoid the dirtiness from happening, since the meshing operation can be
applied on the native data without translation. The cost for imbedding is
extremely expensive and it cannot be done often due to issues other than
technical ones. An alternative for imbedding is to develop the mesh gen-
eration system inter-operatable with CAD systems. The development cost
for this framework is lower than that of imbedding. However, this ap-
proach needs both the CAD and the mesh generation system to be avail-
able locally. In addition, the CAD data and the mesh data should be man-
aged separately afterward.

Most conventional approach is to heal the dirtiness by directly editing
geometric entities of dirty geometries. Manual healing for dirty geometric
models is very labor intensive and time consuming as engineers should de-
structively replace the old geometric entities using sophisticated reasoning.
An investigation was carried out for detail suppression using topological
modifications and the concept of virtual topology was suggested to define
topologies of problems using underlying dirty geometries without exten-
sive editing [SBC97]. Yet cleaning up dirty geometries requires consider-
able user interactions.

While the previous algorithms intend to fix dirtiness in CAD models,
the scope of this study is focused on generation of meshes without altering
the input geometries. A major bottleneck from dirty geometries to 3D fluid
simulations lies in constructing watertight surface meshes as the subse-
quent tetrahedral volume mesh generation is relatively straightforward.
The Cartesian grid approach and shrink wrapping technique are employed
to tackle the problem in the present study. The shrink wrapping approach
was proposed by Kobbelt et al. [KVL99] In their approach, a plastic mem-
brane is wrapped around an object and shrunk either by heating the mate-
rial or by evacuating the air from the space in between the membrane and

Surface Mesh Generation for Dirty Geometries 395

the object’s surface. Theoretically, the plastic skin provides an exact im-
print of the given geometry at the end of process. The problems in apply-
ing their technique to dirty geometry meshing are, first, the construction of
wrapping membrane surface is difficult and, second, the projection opera-
tor may not always provide reliable results to compute traction and relaxa-
tion due to the nature of dirtiness. Thus, the Cartesian grid approach is in-
troduced to construct the wrapping (or wrapper) surface and geometric
modification on the surface is taken to improve closeness of the wrapper
surface to the given geometry.

The Cartesian grid generation is a well-established technique. Basically,
it overlays an axis-aligned structured grid onto the geometry of a problem
and takes a part of the grid, which is in the region of interest. Later, the
nodes near the input geometry can be repositioned or local structure of
mesh can be modified. The octree technique for constructing tetrahedral
meshes can be classified into this technique as it checks intersections be-
tween the cells in the tree and the input geometry and refines each cell in
the region of interest based on intersecting pattern [She85]. Schneider is an
early investigator with full hexahedral elements for 3D volume mesh gen-
eration [Sch95]. Aftosmis and his colleague presented a technique clipping
geometric facets with Cartesian cells and using such information in fluid
simulations [ABM97] and an extended technology has been used in ex-
tracting large scale models such as building geometries using shape pro-
files [WCG05]. Wang extended the application of this technique to dirty
geometry cases [ZF02]. He pointed out that the Cartesian mesh generation
is tolerable to dirtiness of geometries as long as the region of interest can
be classified. And the zigzag boundary of the meshes can be improved us-
ing the best approximation available. There have been active development
works to exploit such technology in extremely complicated applications
with many components and some dirtiness in industrial field [CDA06,
CEI06, CFD06] but few articles have been published in the open literature.
More recently, Boschoff and Pavic carried out an extensive research for
extracting clean surface meshes from architectural models containing
penetrating and touching components [BP05].

2. Outline of the Proposed Algorithm

The major difficulty in generating 3D volume meshes for dirty geometries
for fluid simulations with traditional mesh generation tools is to make the
dirty geometry clean so that the meshing tools can be applied step by step,
for instance, from edge meshing to surface meshing and, then, to volume
meshing. The main idea of the technique presented is (1) to construct a

396

representation from underlying Cartesian grid and (2) improve the surface
mesh while maintaining water-tightness for better approximation to the
original geometry. The watertight faceted representation (or surface mesh)
may not precisely represent geometric details of the model but, at least,
provides a quality surface mesh for the subsequent tetrahedral volume
mesh generation and, eventually, the upstream fluid simulation. The two
phases can be concisely summarized as follows.

Overlaying Cartesian grid and extracting wrapping surface: A simple
Cartesian grid of small number of cells is overlaid to the input geometry.
The cells in the grid are refined until all of them satisfy criteria. The re-
finement for Cartesian cells is carried out while checking intersections be-
tween cells and the input geometry. Given the intersecting cells, all the
non-intersected cells are classified into regions bounded by the intersecting
cells. By collecting outer front of intersecting cells, it is possible to con-
struct a watertight surface, so-called the wrapper surface, for each region.

Modifications of wrapper surface: In general, the initial wrapper surface
represents the topology of a volume collectively defined by the input sur-
faces. However, the detailed geometry of the wrapper surface is far differ-
ent from that of the input volume. The wrapper surface is modified by ad-
justing nodal positions or editing local connectivity of nodes to get better
geometric approximation to the input geometry.

overlap

gap

Input geometry

with dirtiness

(hole, overlaps

intersections, etc.)

Overlaying

Cartesian grid

and intersection

computations

Extracting water-

tight shell(s) of

intersecting cells

Projecting

shell onto

geometry

Improving

quality of

geometric

approximation

overlap

gap

Input geometry

with dirtiness

(hole, overlaps

intersections, etc.)

overlap

gap

Input geometry

with dirtiness

(hole, overlaps

intersections, etc.)

Overlaying

Cartesian grid

and intersection

computations

Extracting water-

tight shell(s) of

intersecting cells

Projecting

shell onto

geometry

Improving

quality of

geometric

approximation

Fig. 1. Schematic description of wrapping procedure

As briefly demonstrated in Figure 1, it is always possible to construct a
watertight surface approximating the volume boundary by extracting the
connected boundary faces of the intersected cells. The typical case in
which the previous statement is not true is when a cell completely falls be-
tween gaps, so-called invisible gap [WS02]. However, geometries in prac-
tice are reasonably well defined and the failure would not happen if cells
around gaps are larger than gap distance.

watertight surface mesh for a dirty geometry by extracting a closed surface

Y.K. Lee et al.

Surface Mesh Generation for Dirty Geometries 397

3. Initial Wrapper Surface Generation

The first phase of the current technique is to construct a rough approxima-
tion for the input dirty geometry, the wrapper surface. This section de-
scribes how to generate the initial wrapper surface using the Cartesian grid
technique.

3.1 Initial Cartesian Grid Generation

The faceted representation such as the stereolithography (STL) format is
used to define the input geometry in this study. The STL format is popular
due to its simplicity and portability. The facets in the geometry are stored
in a search tree to be used for the intersection checks and projection in this
study.

A uniform Cartesian grid is overlaid on the input geometry and its cells
are adaptively refined later. The Cartesian grid is defined with cells and
faces. In this paper, cells are defined with their six faces, locations and di-
mensions. Each face records its left and right neighbor cells. They also
store references to child faces in case of refinement. Vertices are not used
because they are not necessary [ABM97].

3.2 Adaptation of the Grid

Starting from the initial grid, an adaptive grid is constructed by gradually
refining cells until all cells satisfy give size criteria. The size functions
[ZBS02] are used to define the desired local sizes. While the curvature size
function generally regards quality of geometric approximation, the prox-
imity size functions may result topological difference of surface meshes
obtained. For example as shown in Figure 2, insufficient refinement be-
tween gaps in a single connected simple geometry results a double con-
nected representation. The problem is resolved only after two more re-

finement for cells (see Figure 2(b)). In 2D cases, cells of size 2/2G are
required to ensure that the gaps are resolved regardless to orientations and

translations. Similarly, the factor becomes 3/2G in 3D cases. The
maximum difference of refinement between neighboring cells is limited to
1 both for simplicity in the data structure and smooth transition of cell
sizes.

398

3.3 Extracting Initial Wrapper Surface

In the adapted Cartesian grid, there may be several groups of contiguous
non-intersecting cells, the regions. A region may represent a virtual vol-
ume. In complicated models, there are multiple virtual volumes and geo-
metric complexity often results exceptional cases.

Let us paint cells intersecting the input geometry in a simple grid shown
in Figure 3(a). Naturally, those cells form virtual walls which separate
non-intersecting cells into regions. Starting from a side of an intersecting
cell on the exterior region, a closed shell can be extracted by following
neighboring boundary sides of intersecting cells (see Figure 3(b)). There
might be exceptional cases as shown in the interior regions causing non-
manifold connection and fictitious regions. The intersection status of some
cells should be manipulated to resolve such cases.

G

D

(a) (b)

Fig. 2. Proximity size function to resolve gaps

Fig. 3. Nonmanifoldness and fictitious region

Y.K. Lee et al.

fictitious volume created by noisenonmanifoldness

Surface Mesh Generation for Dirty Geometries 399

4. Improvement of Wrapper Surfaces

In general, the initial wrapper surface extracted from the Cartesian grid
topologically represents the virtual volume that is desired to recover. How-
ever, its geometric details, the zigzag configurations, are far different from
the desired geometry. The remaining procedure of the developed technique
is to improve such poor geometric approximation that it represents the in-
put geometry better. This is done by adjusting node positions and locally
editing triangular elements.

4.1 Projection of Nodes

The first step for improving the wrapping surface is to move nodes of the
zigzagged wrapper surface onto the input geometry. The simplest way is to
project the nodes onto the nearest points on the input geometry. However,
the nearest point projection may not give desired results as schematically
shown in Figure 4.

Fig. 4. Abnormal projection of node

Due to the nature of the current approach, it is obvious that all the nodes
are all inside of the volume. (Or all nodes should be outside of the volume
if the exterior wrapper surface was taken.) Thus all nodes should be pro-
jected to either outward or inward. An approximated normal vector, N

v
n
~ , at

a node, N, is computed as

j

N

j

N

v

j

N

j

N

v

N

v

i

F

i

i

F

i

N

v

nn

nn

n

n

n

n
~

, (1)

where F

i
n is a normal vector of its adjacent face and N

v
n is the averaged

normal vector of them. When a node is found to have the sign of inner
product of its approximated normal vector and projection vector that is in-
consistent to those of its neighboring nodes, some preconditioning such as

400

a weighted Laplacian smoothing should be done to prevent invalid projec-
tion.

In many practical cases, there are distinctive features on the boundary
such as sharp edges and boundary between two zones. Often, it is highly
desired to restore such features in the wrapper surface. In addition to the
projection onto the surface, nodes in the vicinity of feature curves in the
geometry are projected onto the feature curves. For a given feature curve,
the closest nodes from the two ends are found on the wrapper surface and a
path between the nodes is traced by using the feature curve as a guide. This
procedure is basically traveling through mesh edges from one end node to
the other while comparing distance to the feature curve and dot product of
the edge vectors and the feature curve tangential vector. The tracing may
fail to identify a reliable path and further investigation is undergoing. Even
after identifying a reliable path, it is often observed that the compulsive
projection of the nodes onto the feature curves deteriorates the configura-
tions of neighboring faces. The projection of nodes is carried out in an in-
cremental manner while checking validity of neighboring faces.

4.2 Editing Local Connectivities

In general, a finer initial wrapper surface provides better approximation
for the input geometry after the projection. However, there may be very
slender and skewed triangles. A set of standard local modification opera-
tions for triangles is used to improve such undesirable configurations fur-
ther.

Edge collapsing: An edge that is unacceptably shorter than its neighbor-

Edge splitting: If an edge is too long comparing to its neighboring
edges, then a new node is introduced at its center and its two adjacent faces
are divided into four triangles in Figure 5(b). The edge splitting is also
used to improve skewed triangles.

Edge swapping: The edge swapping shown in Figure 5(c) can be very
effective to improve the closeness of the faces to the geometry as well as
to improve skewness of slender triangles.

ing edges is removed by merging its two end nodes as shown in Figure 5 (a).
 Also, this operation is used to coarsen surface meshes [GH97].

Y.K. Lee et al.

Surface Mesh Generation for Dirty Geometries 401

N
I

N
J

N
I

N
J

(a) Edge collapsing (b) Edge splitting

1
F

2
F

1
F

2
F

geometry

(c) Edge swapping

Fig. 5. Local mesh editing

4.3 Node Smoothing

Mostly, a weighted Laplacian smoothing [Her76] is used to improve
skewed triangles by repositioning nodes. The nodes are projected back to
the input geometry afterward. When a large number of iterations were ap-
plied to improve triangular quality, excessive smoothing deteriorates de-
tails of configurations and makes projection of nodes back to the geometry
harder by moving nodes too far from the geometry. In such cases, en-
hanced smoothing techniques preserving features and volumes can be very
effective [Tau95, VMM99, ZF02].

4.4 Zone Partitioning

The wrapped surface can be separated into several regions based on the
underlying surfaces. The closest input surfaces are checked for every faces
and faces of same corresponding input surface are grouped and separated
into a zone. This is particularly useful when boundary conditions should be
applied for certain zones in the fluid simulations later. In many cases, there
are many small fictitious zones after initial separation due to the fact that
the wrapper zone boundaries do not exactly follow those of input surfaces.
In such cases, the faces in small islands are redistributed to neighboring
larger zones.

5. Mesh Generation Examples

The presented algorithms are implemented in TGrid, a preprocessor for
FLUENT solver. The developed mesh generator has been exercised on a
set of example problems and the results are presented in the following sec-
tions. The presented examples include a simple geometry to graphically
demonstrate the meshing procedure as well as fairly complicated geome-
tries having intersecting facets to validate effectiveness of the proposed
technique.

402

5.1 Transport Aircraft: General Wrapping Procedure

A relatively simple example is taken in this section to demonstrate the
typical mesh generation procedure developed.

The model is an artificial transportation aircraft which is composed of
five separate parts – fuselage, two wings and two sheet metal parts joining
the fuselage and wings. An initial Cartesian grid is overlaid to the input
geometry shown in Figure 6(a) and the configurations of intersected cells
can be shown as in Figure 6(b). The connected exterior faces of the cells
were extracted and the faces were triangulated based on predefined pattern
in terms of hanging node configurations. Figure 6(c) shows the initial
shrink wrapped surface after projection. The configuration in Figure 6(c)
was improved using the smoothing, local mesh editing, etc. The final mesh
is presented in Figure 6(d) after the zone partitioning.

cells; (c) Initial wrapper surface; (d) Final wrapper surface after improvements
Fig. 6. Typical mesh generation procedure. (a) Input geometry; (b) Intersected Cartesian

Y.K. Lee et al.

Surface Mesh Generation for Dirty Geometries 403

The following figure shows the minor dirtiness of the model. The part
joining the wing and the fuselage does not share identical nodes and edges
with either parts and some portion is penetrating into the fuselage.

Fig. 7. Dirtiness in aircraft model

Fig. 8. Cartesian grid lines on cutting plane

Figure 8(a) displays the gridlines of the underlying Cartesian grid on a
cutting plane. The white lines are on cells intersecting the input geometric
facets. The regions of different shades in Figure 8(b) represent that they
are in separated regions bounded by the intersected cells shown as the
white region.

404

In the existence of distinctive edges, so-called feature lines, in the initial
geometry, such features can be restored in the final mesh by projecting
nodes onto the feature lines as shown in Figure 9.

Fig. 9. Feature line recovery

5.2 Combined Engine Block

The second example in this paper is a V8 engine (see Figure 8(a)). The
model contains three types of typical dirtiness to be dealt in dirty geometry
meshing, intersections by penetrating parts, holes due to missing parts and
unreliable facets due to poor triangulation common in STL files. Figure
8(b) highlights such dirtiness in circles.

(a) Combined engine block. (b) Three types of dirtiness

Fig. 10. V8 engine

In general, any holes whose sizes are larger than cells in the Cartesian
grid may result leakages in wrapping procedure. Thus such holes are de-
sired to be filled prior to the wrapping operation. However, it is almost im-
possible to identify such holes in many complicated models in practice. If
a model is wrapped with leakages due to such holes, the resulting wrapped
surface is folded at a certain location, where the leakage occurs and the
wrapper surface propagates into the inside of the volume. In such case, a

Y.K. Lee et al.

Surface Mesh Generation for Dirty Geometries 405

pair of faces can be chosen and the path between them can be tracked as
shown in Figure 11 and the location of the hole should lie on the path. The
hole should be resolved by adding additional facets manually.

Figure 12 shows a contour plot displaying the distance of each face cen-
ter to the underlying input geometry. This plot can be exploited to quickly
identify locations where higher resolutions with smaller cells are required
if necessary.

Fig. 11. Hole identification with path
tracking

Fig. 12. Distribution of distance between face
centers and underlying geometry

Figure 13(a) illustrates noisy zigzag configurations along the zone
boundaries after partitioning mentioned in the section 4.6. The difficult
cases are to recovery smooth boundary when there is no explicit boundary
between the two zones in the underlying geometry, for instance, a pair of
parts penetrating each other. In such cases, the nodes on the zigzag bound-
ary can be projected onto both parts alternatively and the boundary forms a
smooth line as shown in Figure 13(b).

Fig. 13. Zone partitioning and boundary recovery

406

The CPU time complexity for Cartesian grid generation and region
separation is shown in Figure 14 with a linear trend line. The experiment
was done using a Linux machine with 2 Pentium 4 (3.4GHz) processors.
The CPU times spent for subsequent modifications such as smoothing,
swapping and coarsening were excluded as they are interactive operations
which are triggered one after the other. From the latest refinement stage of
8,882k cells, 4.12 million triangles were extracted into the initial wrapper
surface and it took 298 seconds to extract those triangles, incrementally
project onto the input geometry and improve severely skewed triangles by
edge collapsing and swapping.

0

20

40

60

80

100

120

0 2,000 4,000 6,000 8,000 10,000

Number of Cells (x1000)

C
P

U
 T

im
e
s

 (
s
e
c
s
)

Cell Counts

(x1000)

CPU Time

(secs)

Memory

(MB)

76 3 20

374 9 59

1,891 27 252

8,882 101 1,159

Fig. 14. CPU time complexity for Cartesian grid generation and region generation

5.3 Meshing For Underhood and External Aero-Simulation

The example in this section is taken to illustrate an application of the
developed mesh generator for a model of industrial complexity and to dis-
cuss the turnaround time in industrial applications. The model for a whole
truck body is presented in Figure 15(a) and it contains more than 1250 as-
sembly parts including ones in underhood shown in Figure 15(b). The
original geometry contains 473156 facets with 237761 vertices.

Several resolution levels have been tested and numerical experiment
carried out using a AMD 64bit Opteron machine shows that the developed
mesh generator takes 3.5 GB for 10 million cells and spends 1 hour to gen-
erate 60 million cells with intersection checks. The truck body was placed
in an artificial wind tunnel and wrapped with it. The final wrapper surface
consists of roughly 2 million faces and 1 million nodes after coarsening. It

Y.K. Lee et al.

Surface Mesh Generation for Dirty Geometries 407

Fig. 15. Truck model for underhood thermal management simulation

took roughly 1 man week to construct the wrapped surface mesh ready for
tetrahedral volumetric mesh generation from the initial STL files including
hole filling and tailored mesh generation and connection for critical parts
such as the heat exchanger.

The volume mesh generation was carried out mainly with tetrahedral
elements and wedge prism layers were applied to some parts. Several fail-
ures occurred due to poor triangular quality and excessively close prox-
imity between opposing faces. The final volume mesh used for the fluid
simulation contains 6.8 million cells with 0.7 million interior nodes with
the boundary entities mentioned prior. Figure 17 shows streamlines and
pressure distributions obtained by the simulation.

408 Y.K. Lee et al.

 Fig. 16. Configurations of final wrapper surface for 3D volume mesh generation

Fig. 17. Streamlines and pressure distributions from CFD simulations

Surface Mesh Generation for Dirty Geometries 409

6. Discussions and Future Works

A mesh generation technique has been investigated to construct triangular
3D surface meshes for dirty geometries and applications of the developed
mesh generator have been presented to demonstrate effectiveness of the
proposed technique. The proposed algorithm constructs initial watertight
triangular meshes called the wrapper surfaces from the Cartesian grid
overlaid onto the input dirty geometries by analyzing intersections of its
cells. The final wrapper surface is obtained by gradually improving until a
quality surface mesh is achieved to proceed to the subsequent tetrahedral
volumetric mesh generation with. As the intersection check in Cartesian
grid generation is tolerant to geometric dirtiness to a certain extent, it is
possible to reduce a significant amount of user interactions that were nec-
essary in traditional geometric healing.

Further works are under investigation in some areas. For example, it
will be necessary to improve memory efficiency to exploit the presented
technique on extreme applications such as combined fluid simulations of
external aero, underhood thermal management and cabin HVAC. The cells
in the presented study are represented a face-based unstructured data struc-
ture. A comparative study is undergoing using the octree data structure.
Also, several key improvements should be made to deliver special need to
construct meshes for volumes with thin surfaces attached to. Automated
hole fixing is another challenging issue. The two major problems are, first,
to identify a hole and, second, resolve it. According to our experience, the
hole can be an artifact one caused by missing faces as well as structural
one, for example, a hole on a sheet metal component. The former is rela-
tively easier to detect due to the existence of free mesh edges each having
only one connected face. The later often appears clean as the thin sheet
metal is defined very close two surfaces that are fully connected to
neighboring surfaces. In the existence of holes, the traditional way is to
patch them with extra triangles manually. An interesting alternative is to
coarsen the cells around a hole so that the hole does not appear in the
wrapper surface. Further study will be carried out for this issue.

References

[ABM97] M. J. Aftosmis, M. J. Berger and J. E. Melton (1997) Robust and efficient Car-
tesian mesh generation for component-based geometry, AIAA Paper 97-0196

[BPK05] S. Bischoff, D. Pavic and L. Kobbelt (2005) Automatic restoration of polygo-

[BWS03] M. W. Beall, J. Walsh and Mark S. Shephard (2003) Accessing CAD geometry
for mesh generation. Proc. 12th International Meshing Roundtable, pp. 33-42

nal models, ACM Trans. Graphics, 24(4), pp. 1332-1352.

410

[CDA06] CD-Adapco (2006) PROSTAR Automatic Meshing, http://www.adapco.com/
SoftwareProducts/ proam-htm.htm

[CEI06] CEI Ensight (2006) Harpoon: The Extreme Mesher, http://www.ensight.com/
products/harpoon.html

[CFD06] CFDRC, CFD-VisCART, http://www.cfdrc.com/serv_prod/cfd_multiphysics/
software/ace/viscart.html

[GH97] M. Garland and P. S. Heckbert (1997) Surface simplification using quadric er-
ror metrics, Proc. 24th Annual Conf. on Computer Graphics and Interactive

[Her76] L. R. Hermann (1976) Laplacian-Isoparametric Grid Generation Scheme, J. of
the Engineering Mechanics Division of the American Society of Civil Engi-

[KVL99] L. Kobbelt, J. Vorsatz, U. Labsik and H.P. Seidel (1999) A shring wrapping
approach to remeshing polygonal surfaces, Computer Graphics Forum, 18(3),

[PER04] M. Peric (2004) Simulation of flows in complex geometries: New meshing and
Solution Methods, Proc. NAFEMS Seminar: "Simulation of Complex Flows
(CFD) - Application and Trends", Niedernhausen/Wiesbaden, Germany

[She85] M. S. Shephard (1985) Automatic and adaptive mesh generation, IEEE Trans.

[SBC97] A. Sheffer, T. Blacker, J. Clements and M. Bercovier (1997) Virtual Topology
Operators for Meshing, Proceedings, 6th International Meshing Roundtable,

[Sch95] R. Schneiders (1995) Automatic Generation of Hexahedral Finite Element

[SWC00] J. P. Steinbrenner, N. J. Wyman and J. R. Chawner (2000) Fast Surface Mesh-

[Tau95] G. Taubin (1995) Curve and Surface Smoothing without Shrinkage, Proc. 5th

[VMM99] J. Vollmer, R. Mencl and H. Müller (1999) Improved Laplacian smoothing of

[WCG05] A. Wissink, K. Chand, B. Gunney, C. Kapfer, M. Berger, B. Kosovic, S. Chan
and F. Chow (2005) Adaptive urban dispersion integrated model, 8th American
Meteorological Society Annual Meeting, Atlanta, GA.

[WS02] J. Z. Wang and K. Srinivasan (2002) An adaptive Cartesian grid generation

[ZBS02] J. Zhu, T. Blacker and R. Smith (2002) Background Overlay Grid Size Func-

[ZF02] H. Zhang, E. Fiume (2002) Mesh smoothing with shape or feature preserva-

Techniques, pp. 209-216

neers, 102, pp. 749-756

pp. 119-130

Magnetics, 21, pp. 2482-2489

pp. 49-66

Meshes, Proceedings, 4th Int. Meshing Roundtable, pp. 103-114

ing on Imperfect CAD Models, Proc. 9th Int. Meshing Roundtable, pp. 33-41

Int. Conf. Computer Vision, pp. 852-857

noisy surface meshes, Computer Graphics Forum, 18(3), pp. 131-138.

method for 'Dirty' geometry, Int. J. Numer. Meth. Fluids, 39, pp. 703-717

tions, Proc. 11th Int. Meshing Roundtable, pp. 65-74

tion, Proc. Computer Graphics International 2002, pp. 167-182.

Y.K. Lee et al.

